Red Squill, VIII. Further Notes on Bioassay Methods*

By Justus C. Ward, D. Glen Crabtree and F. E. Garlough

For some years red squill has been used in the United States in rat-control projects. As it is a crude plant product, it is subject to the variations inherent in such a material. Many workers have recognized the fact that red squill will differ from time to time and from sample to sample in its rat-killing ability. This uncertainty in squill action has led to several attempts to introduce adequate bioassays at many separate laboratories in the country. Some years ago comparative tests were run with the same red squill powders at three laboratories and significant differences in results were obtained. These were discussed in a paper by J. C. Munch, et al. (1). For obvious reasons a series of studies has been carried out to determine the influence of various controllable factors on the toxicity of red squill. The first paper detailing some results of these experiments (2) showed that male rats are more than twice as resistant to this poison as are female rats and proved that this is due to the presence of the male hormone, testosterone. The second (3), which has been submitted for publication, shows the effect of altitude on the toxicity of the red squill

Table I.—Influence of the Method of Preparing Bioassay Bait on Red Squill Toxicity Test A. The red squill powder was weighed for each rat individually and then mixed with bait in quantity sufficient to make the total food offered each rat just 1 per cent of its body weight.

Rat No.ª	Sex	Wt., Gm.	Dose, mg./Kg.ª	Result	Rat No.	Sex	Wt., Gm.	Dose, mg./Kg.ª	Result
1	\mathbf{M}	193	1,000	Died—O. N. ^b	11	\mathbf{F}	139	500	Died—O. N. ^b
2	\mathbf{M}	205	750	Died—O. N. ^b	11	\mathbf{F}	147	500	Died—O. N. ^b
3	\mathbf{M}	212	500	Died—O. N. ^b	13	\mathbf{F}	152	400	Died—O. N. ^b
4	\mathbf{M}	224	500	Died—O. N. b	14	\mathbf{F}	161	400	DiedO. N. ^b
5	\mathbf{M}	224	400	Died—O. N. ^b	15	\mathbf{F}	169	250	Died—O. N. ^b
6	\mathbf{M}	263	400	Died—3 days	16	\mathbf{F}	178	250	Died—O. N. ^b
7	\mathbf{M}	269	250	Survived	17	\mathbf{F}	178	200	Died—O. N. ^b
8	\mathbf{M}	270	250	Survived	18	F	179	150	Died—O. N. ^b
9	\mathbf{M}	273	200	Died––2 days	19	\mathbf{F}	181	100	Died—4 days
10	\mathbf{M}	279	150	Survived	20	\mathbf{F}	184	50	Survived

Test B. The red squill powder and the bait were both weighed individually, but only enough bait was added to make the powder amount to 10 per cent of the total food given.

	Rat No.	Sex	Wt., Gm.	Dose, mg./Kg.ª	Result
	21	\mathbf{F}	135	500	Died—O. N. ^b
	22	\mathbf{F}	154	500	Died—O. N. ^b
	23	\mathbf{F}	155	400	Died—O. N. ^b
	24	\mathbf{F}	161	400	DiedO. N. ^b
No males were used in this series.	25	\mathbf{F}	162	250	Died—O. N. ^b
	26	F	171	250	Died $-O. N.^{b}$
	27	\mathbf{F}	182	200	Died—O. N. ^b
	28	\mathbf{F}	183	150	Died—O. N. ^b
	29	F	189	100	Died—O. N. ^{<i>b</i>}
	30	F	205	50	Died—O. N. [®]

Test C. The red squill powder and the bait were first blended into a carefully stirred bioassay mixture containing exactly 10 per cent squill powder. This food was then weighed out in the proper proportions to give the desired dose of poison per rat.

			Prorones			or Po-se	F		
Rat No.	Sex	Wt., Gm.	Dose, mg./Kg.	Result	Rat No.	Sex	Wt., Gm.	Dose, mg./Kg. ^a	Result
31	м	158	1,000	Died—O. N. ^b	41	F	126	500	DiedO. N. ^b
$\overline{32}$	Μ	166	750	Died—O. N. b	42	\mathbf{F}	152	500	Died-O. N. ^b
33	\mathbf{M}	193	500	Died—O. N. ^b	43	F	154	400	Died—O. N. ^b
34	\mathbf{M}	193	500	Died—O. N. b	44	F	155	400	Died—O. N. b
35	\mathbf{M}	196	400	Died—O. N. b	45	\mathbf{F}	173	250	Died—O. N. b
36	Μ	202	400	Died—O. N. b	46	\mathbf{F}	174	250	Died—O. N. ^b
37	\mathbf{M}	207	250	Died—O. N. b	47	\mathbf{F}	175	200	Died—O. N. ^b
38	\mathbf{M}	208	250	Died—2 days	48	\mathbf{F}	176	150	Died—O. N. b
39	М	216	200	Survived	49	\mathbf{F}	177	100	Died—O. N. ^b
40	м	220	100	Survived	50	F	199	50	Died—5 days

^a Milligrams of red squill powder per kilogram of body weight. ^b Over night.

* From the Control Methods Research Laboratory, U. S. Biological Survey, United States Department of the Interior, Denver, Colorado. powder, proving that there is a direct relationship between the two—the higher the altitude, the higher the toxicity. The present paper shows the effects on the toxicity of red squill of (a) the method of preparing the bioassay bait; (b) the concentration of red squill powder in the bioassay bait; and (c) the strain of rat used in the bioassay.

EXPERIMENTAL

In the tests listed in Table I the powder used was made from a single bulb of high potency; in those in Table II, a fortified powder having three times the toxicity of the original crude drug, the powder having been prepared in the Control Methods Research Laboratory; and in those in Table III, six red squill powders of different degrees of toxicity. The tables are self-explanatory.

In all the studies a standard food mixture was used consisting of 85 parts of dried and screened bread crumbs and 5 parts of mineral oil. The bioassay baits were prepared immediately before being fed to the rats. The rats were maintained on

Table II .- Effect of the Percentage of Red Squill Powder in the Bait on Its Toxicity

,			er Cent Bait-	-								
Rat	C	Wt.,	Dose.		Rat	0	Wt.,	Dose.	D			
No.	Sex	Gm.	mg./Kg.ª	Result	No.	Sex	Gm.	mg./Kg.a	Result			
$51_{$	M	127	500	Died-2 days	$\frac{74}{74}$	M	123	500	Died-3 days			
52	M	101	500	Died—2 days	$\frac{75}{72}$	M	108	500	Died-2 days			
53	M	102	500	Died—2 days	$\frac{76}{77}$	M	109	500	Survived			
54	M	103	500	Died-2 days	$\frac{77}{70}$	M	109	500	DiedO. N. b			
55	M	104	500	DiedO. N. ^b	$\frac{78}{28}$	M	110	500	Died-5 days			
56	M	105	500	Died—3 days	79	M	115	500	Died-2 days			
57	M	106	500	Died-2 days	80	M	116	500	Died—1 day			
58	M	134	300	Died—6 days	81	Μ	128	300	Died—2 days			
59	M	185	300	Died—2 days	82	Μ	177	300	Died-2 days			
60	M	186	300	Died—4 days	83	Μ	178	300	Died—4 days			
61	M	189	300	Died—3 days	84	Μ	179	300	Died—6 days			
62	Μ	190	300	DiedO. N.	85	Μ	181	300	Died—O. N.			
63	Μ	191	300	Died—4 days	86	Μ	181	300	Survived			
64	Μ	195	300	Died—O. N.	87	Μ	184	300	Survived			
65	M	137	200	Survived	88	M	132	200	Survived			
66	M	138	200	Survived	89	\mathbf{M}	133	200	Survived			
67	\mathbf{M}	140	200	Died—2 days	90	\mathbf{M}	135	200	Survived			
68	M	80	200	Died—O. N.	91	Μ	82	200	Died—O. N.			
69	м	89	200	Died—5 days	92	Μ	90	200	Died—4 days			
70	М	101	200	Died3 days	93	\mathbf{M}	98	200	Died5 days			
71	м	103	200	Died—8 days	94	M	105	200	Died–5 days			
72	м	110	200	Survived	95	\mathbf{M}	109	200	Died—5 days			
73	\mathbf{M}	113	200	Survived	96	Μ	113	200	Died—2 days			
,			r Cent Bait—		3 Per Cent Bait-							
97	Μ	110	500	Died-2 days	120	\mathbf{M}	101	500	Survived			
98	M	116	500	Died-2 days	121	м	124	500	Survived			
99	М	117	500	Died—O. N. ^b	122	\mathbf{M}	124	500	Died-O. N. ^b			
100	Μ	- 118	500	Died—O. N. ^b	123	M	126	500	Died—1 day			
101	М	120	500	Survived	124	M	126	500	Survived			
102	M	121	500	Died-3 days	125	M	124	500	Died2 days			
103	M	123	500	Died-1 day	126	M	129	500	Died-O. N.			
104	М	114	300	Died-2 days	127	M	104	300	Survived			
105	Μ	169	300	Died-2 days	128	M	141	300	Died-2 days			
106	Μ	170	300	Died-2 days	129	M	$\hat{1}\hat{6}\hat{1}$	300	Survived			
107	M	175	300	Died—2 days	130	M	166	300	Survived			
108	M	176	300	Died—3 days	131	M	$\hat{1}6\hat{6}$	300	Died-3 days			
109	M	176	300	Died -1 day	132	M	167	300	Died-2 days			
110	M	177	300	Survived	133	M	168	300	Died—2 days			
111	M	133	200	Survived	$134 \\ 134$	M	116	200	Survived			
112	M	135	200	Survived	135	M	119	$\frac{1}{200}$	Survived			
113	M	136	$\frac{1}{200}$	Survived	136	M	127	$\frac{1}{200}$	Survived			
114	M	86	$\bar{2}00$	Died—7 days	137	M	89	$\bar{2}00$	Died-5 days			
115	M	93	$\overline{200}$	Died—5 days	138	M	$\tilde{95}$	$\bar{2}00$	Died-5 days			
$\overline{116}$	M	$\tilde{97}$	$\bar{200}$	Died—4 days	$\overline{139}$	M	$\tilde{96}$	$\bar{2}00$	Died—1 day			
117	M	106	200	Survived	140	M	107	200	Survived			
118	M	109	$\bar{200}$	Died—7 days	141	M	108	200	Died-5 days			
119	M	116	$\bar{2}00$	Died—2 days	$\tilde{142}$	M	$\tilde{130}$	$\overline{200}$	Died-5 days			
								-				

^a Milligrams of red squill powder per kilogram of body weight. ^b Over night.

This table shows the following percentage of kills:

Dose	10	8	5	3
500 mg./Kg.	100	85.7	85.7	57.2
300 mg./Kg.	100	71.5	85.7	42.9
200 mg./Kg.	55.5	66.7	55.5	55.5

These figures indicate that the concentration of the poison in the bioassay bait is of decided importance.

a balanced diet in the laboratory for at least 10 days before being used for the experiments. On the evening of the day before the tests were made the food was removed from the stock cages, and the following morning the test animals were removed and weighed into individual feeding cages. The proper doses were computed and the baits weighed. The rats were fed between 3 P.M. and 6 P.M., that is, after a 24-hour fasting period. Water was available in adequate quantity at all times.

Table I shows that, in so far as the two 10 per cent bait methods are concerned, there is no discernible difference, but that when the same doses are given in a bait carrying 1 per cent body weight concentration there is evidence, when the smaller doses are compared, that the larger quantity of food interfered with the action of the squill. Since the Test C method of bioassay bait preparation will save almost half of the weighings involved in the usual feeding test, this laboratory has adopted it as our standard system.

Table III shows that the three strains of rats studied did not exhibit any detectable difference in susceptibility to six different red squill samples of varying toxicities. The rats used were of approximately the same ages, the difference in weights being due to the more rapid growth characteristic of the Yale strain. The Baxter strain

Died-O. N.^b

Died—2 days

Died-6 days

Table IIIInfluence of the Strain of Rat on Red Squill	F able II	I.—Influence	of the	Strain	of Rat	on Red	Squill Toxicity
---	------------------	--------------	--------	--------	--------	--------	-----------------

				Α.	Special	bulb 10 p	er cent ba	it				
	-Baxte		in			Universi	ty Strain—				Vale Strain	1
Rat No.	Wt., D Gm. mg.,)ose, ∕Kg.ª	Result	Rat No.	Wt., Gm.	Dose, mg./Kg.	Resu	lt	Rat No.	Wt., Gm.	Dose, mg./Kg.ª	Result
143	105 3	00	Died-O. N. ^b	155	117	300	Died-4	days	167	131	300	Died—O. N. ^b
144	142 3	00	Died0. N. ^b	156	142	300	Died—3	days	168	217	300	Died—3 days
145	143 2	50	Died—3 days	157	153	250	Died—6	days	169	220	250	Survived
146	170 2	50	Died3 days	158	161	250	Died—6	days	170	240	250	Died-O. N.
147		50	Survived	159	165	250	DiedO		171	242	250	Died5 day ^b
148		50	Died–2 days	160	179	250	DiedO		172	293	250	Died-O. N.s
149		50	Died—O. N. b	161	135	250	Died—O		173	195	250	Died-0. N. ^b
150		250	Died-0. N. ^b	162	144	250	Died—O		174	215	250	Died—4 day ^b
151		250	Died—O. N. b	163	151	250	Survived	-	175	222	250	Died—4 days
152		:50	Died—2 days	164	160	250	DiedO		176	238	250	Died—O. N.s
153		:00	Died—3 days	165	168	200	Died3		177	247	200	Died6 day ^b
154	214 2	00	Died3 days	166	176	200	Died—O	. N.º	178	292	200	Died—6 days
			В.	"Cake	ed" squil	ll No. 170	05 10 per ce	ent bait	;			
			Baxter Strain—			~ <i>,</i>				e_Strain		
Ra No		Vt., Sm.	Dose, mg./Kg.	D	esult		Rat No.	Wt., Gm.		Dose, g./Kg.		Result
									111			
179		.43	2500		-1 day		184	230		2500		d = 1 day
180		.64	2000		2 day	S	185	246		2000		$d \rightarrow 0. N.^{b}$
181		.83	1500		-1 day		186	250		1500		d—1 day
182		208	1000		-6 day	s	187	276		1000		vived d—O. N. ^b
183) 2	216	750	Surv			188	287		750	Die	a0. N."
			С.	-	-		706 10 per	cent ba	it			
189) 1	48	2500		—0. N.		194	235		2500		d—O. N. ^b
190) 1	61	2000	Died	—2 day	s	195	245		2000	Die	d—O. N. ^b
191		84	1500		—1 day		196	260		1500		d—∙O. N. ^b
192		209	1000		—1 day		197	271		1000		d—2 days
193	3 2	215	750	Died	—3 day	s	198	284		750	Die	d—O. N. ^b
			D. Red sq	uill pow	der No.	1699 (Fo	rtified $2 imes$)	10 per	cent b	ait		
199) 1	20	600		O. N.		205	215		600		d—O. N. ^b
200		67	500		1 day		206	250		500		d—O. N. ^b
201		79	400		—0. N.		207	257		400		d—O. N. ^b
202		92	300		O. N.		208	278		300		d—O. N. ^b
203		99	250		—0. N.		209	281		250		d—O. N. ^b
204	4 2	225	200	Died	3 day	s	210	310		200	Die	d—2 days
			E. Red so				ortified $7 \times$) 5 per	cent ba	it		
211		65	250		O. N.		217	211		250		dO. N. ^b
212	2 1	70	200	Died	—2 day	s	218	251		200	Die	d—1 day
213		72	150	Survi			219	254		150		d—1 day
214		96	100	Survi			220	278		100		vived
215		.97	75	Survi			221	280		75		vived
216	5 2	36	50	Survi	ived		222	354		50	Sur	vived
			F.	-	-		709 10 per	cent ba	it.			
223		42	2500		—0. N.		229	229		2500		d—2 days
224		65	2000		—3 day		230	247		2000		d6 days
225		83	1500		0. N. ^t	b	231	257		1500		d—O. N. ^b
990	. 1	0.1	1950	Diad	9 4	a	999	077		1950	Dia	A ON V

750 ^a Milligrams of red squill powder per kilogram of body weight.

1250

1000

Died—2 days

Died-2 days

Died-6 days

277

285

305

232

233

234

1250

1000

750

^b Over night.

226

227

228

191

206

217

of rats is a hybrid one, predominately Wistar. The Denver University strain is a hybrid which has been inbred at the local colony for many years. The Yale strain used was a pure line obtained from the University of Colorado School of Medicine.

CONCLUSIONS

1. Mixing weighed quantities of red squill powder with food to make 1 per cent body weight bioassay baits is not satisfactory for accurate studies, since the ratio of poison to food will vary, and a definite food interference is noted when small doses of squill are fed.

2. It is satisfactory either to weigh out both the red squill powder and the bait for the bioassay bait and mix for each individual test animal, or previously to blend a standard concentration bait and weigh the proper quantities of this food to give the doses desired.

3. The percentage of red squill powder in the bioassay bait is of importance, both as regards the ultimate toxicity and the speed of action of the poison.

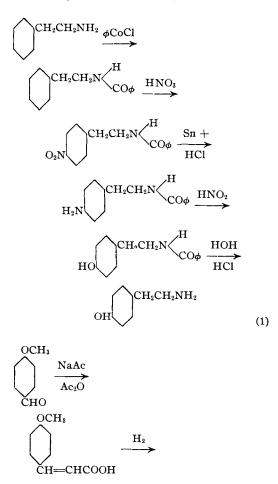
4. The strain of rat used does not affect the bioassay, when the animals have been maintained on the same diet for at least a week before the beginning of the bioassay. The rats used should be of approximately the same age when bioassays on two or more strains are to be carefully compared.

5. Depending upon the quality of the squill powder being tested, from 0 to $33^{1/3}$ per cent of the animals survive longer than three days, although they ultimately die with typical red squill symptoms, and accordingly must be counted in the bioassay. In many cases the tests must be allowed to continue for seven or eight days.

6. Female rats are more than twice as susceptible to red squill powder as are male rats.

BIBLIOGRAPHY

(1) Munch, J. C., Ward, J. C., Mills, E. M., Buck, R. E., and Jarvis, F. N., "Red Squill, IV. Bioassay Methods," *Jour. A. Ph. A.*, 26 (1937), 27-29.


(2) Crabtree, D. G., Ward, J. C., and Welch, J. F., "Sex Differences in Albino Rats to Toxic Doses of Powdered Red Squill," *Endocrinology*, 25 (1939), 629-632.

(3) Ward, J. C., Spencer, H. J., Crabtree, D. G., and Garlough, F. E., "Red Squill, VII. The Influence of Altitude upon the Toxicity of Red Squill Powder," Jour. A. Ph. A., 29 (1940) 350.

The Synthesis of Hydroxymandelonitrile Dibenzoates

By Kenneth E. Hamlin, Jr.,* and Walter H. Hartung

The biological importance of tyramine and the rather incompletely reported pharmacological studies of other β -hydroxyphenylethylamines led to the investigation of possible intermediates for a synthesis of tyramine and its isomers. Previous syntheses have been reported by Barger and Walpole (1) from phenylethylamine and from anisaldehyde as indicated by:

* University of Maryland Alumni Fellow, 1938– 1939; Wm. R. Warner Fellow 1939–1940.